- Presentación
- Temario
- Metodología
- Titulación
Descripción
¿A quién va dirigido?
Objetivos
- Grabar a través del lenguaje de programación que sea compatible con Arduino aquellas instrucciones que se deseen.
- Programar en C++ los pines de entrada y salida desde el core o la API de Arduino.
- Analizar las entradas y el uso de las salidas analígicas con Phyton para comprender su manejo.
- Adquirir conocimientos sólidos sobre Machine Learning para analizar y crear modelos analíticos.
- Utilizar TensorFlow para detectar intervalos de tiempo periódicos y predecir comportamientos.
- Generar conjuntos de datos a partir de la extracción y detección de parámetros en Arduino.
- Crear paso a paso aplicaciones y redes neuronales artificiales a través de TensorFlow.
Salidas Profesionales
Temario
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y PRIMEROS PASOS
- ¿Qué es la inteligencia artificial?
- Hardware y software unidos por la Inteligencia Artificial
- Inteligencia Artificial y Visión Artificial
- Arduino: introducción
UNIDAD DIDÁCTICA 2. PREPARACIÓN DE ARDUINO Y CONFIGURACIÓN DE ENTORNO PYTHON
- Instalación de Arduino
- Configurando tu Arduino para Python
UNIDAD DIDÁCTICA 3. CODIFICACIÓN Y CONTROL DE ARDUINO CON PYTHON
- Control de Arduino
UNIDAD DIDÁCTICA 4. MANEJO DE ENTRADAS ANALÓGICAS CON PYTHON
- Manejo de entradas
- Entradas analógicas
UNIDAD DIDÁCTICA 5. USO DE SALIDAS ANALÓGICAS
- Salidas analógicas
- Valores analógicos en Arduino
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A MACHINE LEARNING
- Introducción al machine learning
- Aprendizaje supervisado
- Aprendizaje no supervisado
UNIDAD DIDÁCTICA 7. REDES NEURONALES, SERIES TEMPORALES Y PROBLEMAS DE REGRESIÓN
- Redes neuronales y deep learning
- Series Temporales
UNIDAD DIDÁCTICA 8. OBTENCIÓN DE PARÁMETROS EN ARDUINO Y GENERACIÓN DE CONJUNTOS DE DATOS
- Funciones y parámetros
- Variables y constantes especializadas
- Estructura de control
UNIDAD DIDÁCTICA 9. PROCESAMIENTO DE DATOS Y ETAPA DE ENTRENAMIENTO
- Introducción
- ¿Qué son los datos de entrenamiento de IA?
- ¿Por qué se requieren datos de entrenamiento de IA?
- ¿Cuántos datos son adecuados?
- ¿Qué afecta la calidad de los datos en el entrenamiento?
UNIDAD DIDÁCTICA 10. CREACIÓN DE RED NEURONAL ARTIFICIAL Y APLICACIONES CON ARDUINO Y TENSORFLOW CON KERAS
- Crear red neural paso a paso
- Redes neuronales: Aprendizaje
- Otras redes neuronales
Metodología
EDUCA LXP se basa en 6 pilares
Titulación
INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.
Explora nuestras Áreas Formativas
Construye tu carrera profesional
Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.
Curso de Machine Learning con Arduino y Tensorflow 2.0